Area insegnanti

Lanciato dal settembre 2000, il progetto che presentiamo ha già permesso a migliaia di scolari di tutto il mondo di misurare la circonferenza della Terra come fece un certo Eratostene, più di 2200 anni fa. La Guida dell'insegnante vi darà maggiori informazioni sull'argomento, ma ora riassumiamo in poche parole il principio di questa esperienza:

Si mette al sole un bastone verticale, si misura la sua ombra quando l'astro raggiunge il punto più alto nel cielo, se ne deduce l'angolo che i raggi solari formano con la verticale, quindi si scambia il proprio risultato con quello di un corrispondente situato ad un'altra latitudine. Successivamente, alcuni tracciati geometrici ed una regola del tre permettono di valutare la lunghezza del meridiano terrestre.


Un progetto interdisciplinare

Verranno trattate numerose discipline, spesso in chiave ludica, per permettere ai bambini di acquisire conoscenze molto svariate (la maggior parte delle quali sono in relazione con i nuovi programmi scolastici).
• La storia e la geografia: si incomincerà parlando dell'Antico Egitto per collocare Eratostene nell'epoca e nel luogo che furono i suoi, mentre alla fine del progetto si tratterà di orientarsi sul globo terrestre e di rilevare la posizione di uno o più corrispondenti.
• L'astronomia, poi: l'ombra di un semplice bastone permetterà di mettere in evidenza la traiettoria del Sole durante il giorno e di individuare il momento in cui l'astro è in posizione culminante, quindi di osservare l'andamento di questa traiettoria nel corso delle stagioni.
• La fisica, naturalmente: la luce e l'ombra sono al centro del progetto, per cui si procederà ad esperienze dirette, passando poi a simulazioni, per riprodurre i fenomeni che si sono osservati.
• La tecnologia, pure, dal momento che si potranno realizzare e regolare gli strumenti necessari: gnomoni (quadranti solari primitivi), fili a piombo, livelli a bolla d'aria, squadre, quadranti, saranno elaborati, costruiti, collaudati e messi a punto dagli alunni stessi.
• La matematica, naturalmente, e in particolare la geometrica, perché si parlerà di rette parallele, angoli, triangoli, cerchi, eguaglianza d'angoli, rapporti di lunghezza…
-La lingua orale e scritta, perché è alla base di tutte le attività, specialmente quelle che riguardano il metodo sperimentale, secondo i principi di La main à la pâte: gli alunni formulano delle ipotesi,
propongono esperienze, fanno delle osservazioni, quindi enunciano delle conclusioni sia oralmente, sia per iscritto in un quaderno di esperienze che ognuno tiene aggiornato.
• Le tecniche dell'informazione e della comunicazione: grazie ad Internet, i bambini fanno ricerche documentarie, corrispondono con i partner per scambiare con loro i risultati delle misurazioni e dei calcoli che hanno fatto.
• Le arti plastiche, in quanto questo progetto permette ad ognuno di manifestare il proprio talento creativo: disegni ispirati alla storia di Eratostene, fumetti, modellini che illustrano le esperienze, giochi di calligrafia sui geroglifici e l'alfabeto greco…

 

 

Un itinerario modulabile


Il percorso che vi proponiamo è un percorso ideale che potrete adattare in qualsiasi momento, in base a diversi fattori: l'età, il livello e la motivazione dei vostri alunni, il numero di elementi nel gruppo, il tempo che volete – o potete – dedicare a questo progetto, per non parlare dei capricci della meteo… Inoltre, terrete conto della diversità delle risposte date dai bambini e dai loro suggerimenti che talvolta influiranno – sorprendentemente, sullo svolgimento delle cose.

 

Sono dunque possibili delle scorciatoie, ma il vostro percorso " minimo " dovrà essere articolato attorno alle cinque fasi seguenti:
1. Mettere in evidenza congiuntamente l'incurvatura della superficie terrestre e il parallelismo dei raggi solari.
2. Osservare l'evoluzione dell'ombra di un bastone e dedurne la traiettoria del Sole.
3. Scoprire il momento del mezzogiorno solare (è il momento in cui l'ombra è più corta).
4. Utilizzare uno gnomone per dedurre l'angolo dei raggi solari con la verticale.
5. Utilizzare i rilevamenti di un corrispondente e localizzare i due partner sulla Terra per valutare la lunghezza del meridiano terrestre.


Infine, solo una parola a proposito del materiale: vedrete che questo materiale è molto semplice e poco costoso perché si tratta di oggetti d'uso corrente (cartoncino bristol, cartone, carta da ricalco e millimetrata, viti, tavolette, spago, lampadine elettriche, palloni, mappamondo…). Ne troverete la lista all'inizio di ciascuna delle cinque sequenze del modulo pedagogico.
In bocca al lupo a tutti quanti, sui passi di Eratostene !

 


1 - Le osservazioni di Eratostene

 

Nel 205 avanti Cristo, il greco Eratostene, allora Direttore della Grande Biblioteca di Alessandria, in Egitto, propone un metodo puramente geometrico per misurare la lunghezza del meridiano terrestre (circonferenza che passa attraverso i poli).
Partirà dall'osservazione di ombre portate misurate in due luoghi, Alessandria d'Egitto e Siene (l'odierna Assuan), distanti circa 800 km (distanza stimata secondo il tempo che mettevano le carovane di cammelli per collegare queste due città !), al momento del solstizio d'estate e all'ora del mezzogiorno solare locale.
In quel giorno, e in quell'ora precisa, nell'emisfero Settentrionale, il Sole si trova, rispetto a tutti gli altri giorni dell'anno, sulla posizione più alta sopra l'orizzonte. Ma Eratostene nota delle differenze tra un luogo e l'altro.

 

  
A Siene (che si trova approssimativamente sul tropico del Cancro) il Sole è sulla verticale, tant'è vero che i suoi raggi penetrano sino in fondo ai pozzi; e, per quanto riguarda le ombre portate degli oggetti verticali, esse sono perfettamente centrate su di essi..   Ad Alessandria, invece, il Sole non è più sulla verticale e questi stessi oggetti hanno un'ombra molto piccola. Eratostene misura allora l'ombra di un obelisco di cui conosce già l'altezza, e ne deduce l'angolo che formano i raggi solari con la verticale: trova 7,2°

 




A partire da tutte queste osservazioni, gli si presentano due ipotesi:

 

  
La Terra è piatta, ma allora il Sole dovrebbe essere sufficientemente vicino perché la divergenza dei suoi raggi che raggiungono oggetti distanti sia significativa:infatti, gli oggetti di identica lunghezza hanno ombre di diverse lunghezze e non hanno nessuna ombra quando si trovano a perpendicolo sotto il Sole (angolo nullo).   La Terra non è piatta, la sua superficie è curva, e forse persino sferica. Ma sta di fatto che gli stessi risultati possono essere ottenuti solo con raggi solari tutti paralleli: questo implica che il Sole è abbastanza lontano, per non dire molto, molto lontano …

 

Eratostene opta per la seconda ipotesi.
Gli Antichi, infatti, sospettavano già che la Terra non fosse piatta, questo per tante osservazioni che avevano fatto e che dimostravano un certa curvatura della sua superficie:

Il navigatore arrampicato in cima all'albero maestro scorge per primo la lontana costa;

L'osservatore dall'alto di una scogliera vede per più tempo il vascello che si allontana sull'orizzonte rispetto a colui che è rimasto sulla spiaggia;

La stella polare non è alla stessa altezza dell'orizzonte sopra la Grecia e sopra l'Egitto;

Per noi parlare poi delle eclissi della Luna, quando l'ombra della Terra che si proietta sulla Luna rivela una sezione circolare.
Persuaso che la Terra sia sferica, il nostro geniale Eratostene traccerà la sua celebre figura geometrica di "straordinaria semplicità ", che gli permetterà di calcolare facilmente la lunghezza del meridiano terrestre! Guardate un po':

Se la Terra è sferica, prolungando la verticale di Alessandria (l'obelisco) e quella di Siene (il pozzo), queste due verticali si congiungeranno per definizione al centro della Terra. D'altra parte, Eratostene sa che, essendo la città di Siene situata dritto verso il sud rispetto ad Alessandria, le due città si trovano press'a poco sullo stesso meridiano. E poiché i raggi solari sono effettivamente paralleli, l'angolo formato dalle due verticali al centro della Terra è dunque identico a quello che ha misurato grazie all'ombra dell'obelisco (7,2°).

 

 

La proporzione di quest'angolo rispetto ai 360° dell'angolo giro è la stessa di quella della distanza che separa le due città (circa 800 km) rispetto alla circonferenza del cerchio (nel caso
presente, il meridiano terrestre). Potete indovinare il resto: 360° diviso 7,2° fanno 50, e 800km moltiplicati per 50 fanno 40000km (lunghezza che è stata ulteriormente trovata con altri processi).

 

  L'angolo dei matematici Come abbiamo detto più sopra, le osservazioni di Eratostene possono essere capite anche con la prima ipotesi, quella di una Terra piatta e di un Sole molto vicino. Orbene, alcuni dati forniti da questo geniale personaggio ci permettono addirittura di calcolare con esattezza la distanza a cui si sarebbe dovuto trovare questo Sole. In questo caso, infatti la tangente dell'angolo di 7.2° sarebbe uguale al rapporto degli 800 km che separano Siene da Alessandria, sulla distanza che separa la Terra dal Sole: In tal modo, si trova che la distanza sarebbe stata: 800 km / tan 7.2 = 6500 km circa dalla Terra (ossia il valore del raggio terrestre), il che è straordinariamente vicino alla realtà, poiché oggi sappiamo che il nostro Sole si trova a circa 150 milioni de Km da noi!

 


2 - Adattare un progetto sperimentale per la classe


Potete realizzare questo esperimento in coppia con un'altra classe (di cui vi forniremo gli estremi) ma senza aver bisogno di obelischi e di pozzi ! Un semplice bastone verticale basterà per gli uni e per gli altri, preferibilmente di identica altezza per semplificare i paragoni dei rilevamenti dell'ombra

 

 

 

 

Non sarà neppure necessario che una delle due classi gemelle sia situata sul tropico del Cancro! Dovrà solo trovarsi ad una latitudine nettamente diversa dall'altra..

Se le due scuole si trovano all'incirca sullo stesso meridiano, tanto di guadagnato … Altrimenti, nessun problema, poiché ciascuna a turno vedrà "il suo mezzogiorno" sul proprio meridiano! Inoltre, la figura mostra che non è il chilometraggio fra le vostre due scuole che verrà preso in considerazione, ma la distanza più breve che separa i due paralleli che danno le loro rispettive latitudini (vedrete poi come questa distanza si valuta molto semplicemente) .)

 

 

 

Nessun bisogno, inoltre, di aspettare il giorno del solstizio d'estate per effettuare le rilevazioni ! Andrà benissimo qualsiasi giorno dell'anno, a condizione che sia lo stesso di quello del vostro partner: quindi sarà prudente mettervi d'accordo e ripetere l'operazione un certo numero di giorni dopo… Per quanto riguarda la determinazione, fatta da ciascuna scuola, del momento del mezzogiorno solare (diverso da un luogo all'altro ogni giorno dell'anno), anche in questo caso non c'è nessun problema: si tratterà semplicemente di individuare l'ombra più corta nella mezzora che corre attorno alle ore 13.00 nell'ora invernale: un gioco da ragazzi … A condizione, naturalmente, che il Sole stia al gioco !



3 - Esempio di due classi situate a Lafrançaise (Francia) e Meerut (India)

 

 

Giovedi, February 10, 2011.
Coordinate delle due città:
Lafrançaise: latitude 44°08'N, longitude 1°15'E
Meerut, latitude 29°00'N, longitude 77°42'E.

 

 

Questi rilevamenti hanno permesso ai bambini di valutare poi, con una precisione di mezzo grado, l'angolo dei raggi del Sole (al momento del mezzogiorno solare locale) a partire da un tracciato geometrico molto semplice:
Hanno trovato per Lafrançaise alpha 1 = 58.5°
E per Meerut alpha 2 = 43.5°.

 

 

 

 

 

Ma come valutare, a partire da questi due angoli, il famoso angolo alfa? Basta ottrarre l'angolo alfa 2 dall'angolo alfa 1, il che dà come risultato15°.   Poiché le due scuole partner non sono situate sullo stesso meridiano, bisogna poi determinare la distanza più corta fra il parallelo di Lafrançaise e quello di Meerut. È semplicissimo: su una carta, si tracciano accuratamente i due paralleli e, utilizzando la scala della carta, si valuta la loro distanza. Qui, il valore che è stato trovato si avvicina ai1670 km.

 

Abbiamo ora i due elementi necessari per il calcolo del meridiano terrestre secondo il "metodo Eratostene": l'angolo alfa di 15° e la distanza di 1670km fra i due paralleli. Dato il fatto che la proporzione del cerchio intero rispetto ai 15° trovati è di 24 volte (360° diviso 15°), il calcolo del meridiano viene effettuato moltiplicando 1670km per 24, il che fa 40080km… Metodo efficace, a condizione che le misure prese siano quanto più precise possibile (soprattutto se le latitudini sono più ravvicinate !)

 

È interessante sapere, come mostra la figura, che la differenza fra le due latitudini ci fornisce immediatamente il famoso angolo alfa ! Con le nostre due scuole gemelle, si ottiene il seguente risultato:
44°08'-29°00'=15°08'.
Osserviamo che i rilevamenti di misure effettuati dai bambini sono molto corretti poiché i nostri alunni ne hanno dedotto un angolo di 15°, ossia un valore molto vicino.

 

 

 
Insistiamo sul fatto che il metodo "diretto" del calcolo dell'angolo alfa grazie alla conoscenza delle due latitudini non deve essere assolutamente comunicato ai bambini in un primo tempo ! Invece, potrà essere utile per loro conoscerlo, in un secondo tempo, per individuare eventuali errori nei loro rile

 


4 - Le tappe della messa in opera del progetto

 

 

Conformemente ai principi di La main à la pâte, baderete a lasciare ampio spazio alla riflessione dei bambini: li incoraggerete a formulare ipotesi che verificheranno poi immaginando esperimenti adeguati. Ogni alunno avrà un quaderno nel quale registrerà, con disegni o brevi frasette, le proprie ricerche, e nel quale saranno esposti i lavori di gruppo e i bilanci eseguiti in modo collettivo. Questo vi permetterà di verificare la corretta comprensione dei lavori svolti in classe e di seguire l'evoluzione di ognuno dei vostri alunni.


Ecco dunque le diverse tappe che vi proponiamo:


1/ Messa on-line delle prime sequenze, apertura di una mailing list per le scuole che partecipano al progetto. Gli studiosi e i formatori saranno iscritti in questa lista e risponderanno alle domande che porrete loro.
2/ Aderendo al progetto, sarete automaticamente iscritti alla mailing list del progetto Eratostene. In tal modo, potrete comunicare facilmente con gli altri insegnanti del progetto. Riceverete anche una password che vi darà accesso ad uno spazio di lavoro. Questo spazio di lavoro permette ad ogni classe: di collegarsi per registrare e visualizzare il risultato delle proprie misure sul sito del progetto di accedere alle coordinate di tutte le classi partecipanti al progetto di prendere conoscenza delle loro misure di visualizzare le classi partecipanti al progetto su un mappamondo di pubblicare
3/ Per tutta la durata delle attività, le classi scrivono le loro misure nello spazio di lavoro del progetto. Si possono programmare delle misurazioni in sincronia fra due o più scuole utilizzando la mailing list.
(Settembre e marzo equinozi. Dicembre e giugno solstizi)

Partners del progetto

Fondazione La main à la pâte